User Similarity from Linked Taxonomies: Subjective Assessments of Items

نویسندگان

  • Makoto Nakatsuji
  • Yasuhiro Fujiwara
  • Toshio Uchiyama
  • Ko Fujimura
چکیده

Subjective assessments (SAs) are assigned by users against items, such as ’elegant’ and ’gorgeous’, and are common in reviews/tags in many online-sites. However, previous studies fail to effectively use SAs for improving recommendations because few users rate the same items with the same SAs, which triggers the sparsity problem in collaborative filtering. We propose a novel algorithm that links a taxonomy of items to a taxonomy of SAs to assess user interests in detail. That is, it merges the SAs assigned by users against an item into subjective classes (SCs) and reflects the SAs/SCs assigned to an item to its classes. Thus, it can measure the similarity of users from not only SAs/SCs assigned to items but also their classes, which overcomes the sparsity problem. Our evaluation, which uses data from a popular restaurant review site, shows that our method generates more accurate recommendations than previous methods. Furthermore, we find that SAs frequently assigned on a few item classes are more useful than those widely assigned against many item classes in terms of recommendation accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Supercharging Recommender Systems using Taxonomies for Learning User Purchase Behavior

Recommender systems based on latent factor models have been effectively used for understanding user interests and predicting future actions. Such models work by projecting the users and items into a smaller dimensional space, thereby clustering similar users and items together and subsequently compute similarity between unknown user-item pairs. When user-item interactions are sparse (sparsity p...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation

Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011